

APPROVAZIONE DELL'ATTRIBUZIONE DELLE BORSE DI STUDIO BANDO DI CONCORSO PER L'AMMISSIONE AI CORSI DI DOTTORATO DI RICERCA NAZIONALE IN "THEORETICAL AND APPLIED NEUROSCIENCE" — Ulteriori assegnazioni - (XXXVIII° CICLO a.a. 2022/2023)

IL RETTORE

- Visto il DM n. 224 del 30 aprile 1999 "Regolamento in materia di dottorato di ricerca";
- Visto il Decreto Ministeriale 14 dicembre 2021, n. 226 sui dottorati di ricerca
- Considerato il Regolamento della School of Advanced Studies, emanato con DR n. 168/2022;
- Considerato il Regolamento di Ateneo in materia di Dottorato di Ricerca, emanato con Decreto Rettorale n.169/22 prot. n. 30817 del 6 maggio 2022;
- **Visto** la legge 3 luglio 1998, n. 210 "Norme per il reclutamento dei ricercatori e dei professori universitari di ruolo", in particolare l'art. 4 "Dottorato di ricerca";
- Visto il Decreto del Ministro dell'Istruzione, dell'Università e della Ricerca n. 351 del 9 Aprile 2022 recante il riparto di 2.500 borse di dottorato di durata triennale per la frequenza di percorsi di dottorato in programmi specificamente dedicati e declinati (Finanziamenti PNRR); Visto il Decreto del Ministro dell'Istruzione, dell'Università e della Ricerca n. 352 del 9 Aprile 2022 recante il riparto di 5.000 borse di dottorati innovativi che rispondono ai fabbisogni di innovazione delle imprese e promuovono l'assunzione dei ricercatori dalle imprese (Finanziamenti PNRR);
- Considerate le Linee guida di Ateneo e "Policy UNICAM" OTM-R (Open, Transparent and Merit-based Recruitment of Researchers), approvate dal Senato Accademico nella seduta n. 28 del 31 maggio 2016;
- Considerato il bando di concorso per l'ammissione al corso di dottorato di ricerca nazionale in "Theoretical and Applied Neuroscience" Ulteriori assegnazioni (XXXVIII ciclo a.a. 2022/2023), emanato con Decreto Rettorale n.438/22, prot. n. 0078778 del 11 novembre 2022 e pubblicato sul sito bandi.miur.it il 14 novembre 2022;
- Considerato il verbale della Commissione di valutazione del Corso di Dottorato in "Theoretical and Applied Neuroscience" nominata con Decreto Rettorale n. 487/2022, Prot. n. 0086363 del 13/12/2022;

DECRETA

Articolo 1 – Approvazione dell'attribuzione delle borse di studio

L'attribuzione delle borse di studio dei candidati risultati idonei alla selezione per il Corso di Dottorato di Ricerca in "Theoretical and Applied Neuroscience" – Ulteriori assegnazioni- (XXXVIII ciclo a.a. 2022/2023) riportata in calce. La stessa sarà pubblicata sul sito istituzionale Unicam ed alla pagina https://isas.unicam.it.

L'ATTRIBUZIONE DELLE BORSE PUÒ CAMBIARE IN CASO DI RINUNCIA DA PARTE DEI CANDIDATI

I candidati idonei riceveranno comunicazione dell'avvenuta ammissione; solo su richiesta, ai candidati esclusi verrà trasmesso un giudizio sintetico sulla loro performance stilato dalla Commissione giudicatrice.

Per l'attribuzione delle borse di studio è richiesto che il candidato abbia conseguito il titolo di ammissione al Dottorato da meno di 6 anni alla data di scadenza del bando (09/12/2022), elevabili ad 8 anni qualora il candidato abbia frequentato anche una Scuola di Specializzazione e di un ulteriore anno per ogni eventuale gravidanza.

I dottorandi possono essere fruitori di borsa se l'ammontare massimo degli emolumenti annui non supera l'importo annuo della borsa calcolata al netto degli oneri (per l'a.a. 2022/2023, tale importo è calcolato in € 14.346,36).

ATTRIBUZIONE DELLE BORSE PER TEMATICA

Curriculum	Research Project	Host Institution	Number of fellowships		
Curriculum 1: Cognitive and Behavioral Neuroscience					
1.1	Whole-brain circuits for fear attenuation	CNR Institute of Neuroscience, Milan (Humanitas)	Tarik Tartan Col		

Curriculum 3: Preclinical Clinical and Translational Neuroscience				
3.1	Metabolic reprogramming of senescent microglia to fight neurodegeneration	CNR Institute of Neuroscience, Milan (Vedano al Lambro)	Roncella Giordano	
3.2	The brain anti-reward center in autism spectrum disorders	CNR Institute of Neuroscience, Pisa	Scorrano Manuel	
3.3	Data-driven reconstruction of a computational model of human hippocampus	University of Modena and Reggio Emilia	Coluccio Giada	
3.4	The Perturbational Atlas: studying loss and recovery of consciousness in humans by employing invasive and non-invasive stimulation and recordings techniques.	University of Milan	Valenzano Serena	
Curriculum 4: Computational and System Neuroscience				
4.1	Unraveling conscious perception through large, curated datasets of intracranial human recordings	CNR Institute of Neuroscience, Parma	Cassani Chiara	
4.3	Realization of novel computational pipelines to analyse brain signals of humans and other animals engaged in cognitive tasks	Institute of Cognitive Sciences and Technologies, National Research Council (ISTC-CNR)	Giraldi Enrico	
4.4	Chaotic recurrent neural networks to study the brain basal ganglia-thalamocortical system	Institute of Cognitive Sciences and Technologies, National Research Council (ISTC-CNR)	Alfieri Valerio	
4.5	Implementation of data-driven multi- scale models of neurons and brain networks of rodents and humans, under physiological and pathological states	Institute of Biophysics, National Research Council, Palermo	Solangi Maqsood Ali	
4.6	Filling the gap between invasive and non-invasive stimulation and recordings techniques in humans	University of Milan	Samipour Mohammad Amin	

IL RETTORE Prof. Claudio Pettinari